Parallel resampling in the particle filter

نویسندگان

  • Lawrence M. Murray
  • Anthony Lee
  • Pierre E. Jacob
چکیده

Modern parallel computing devices such as the graphics processing unit (GPU) have gained significant traction in scientific computing, and are particularly well-suited to dataparallel algorithms such as the particle filter. Of the components of the particle filter, the resampling step is the most difficult to implement well on such devices, as it often requires a collective operation, such as a sum, across weights. We present and compare a number of resampling algorithms in this work, including rarelyused alternatives based on Metropolis and rejection sampling. We find that these alternative approaches perform significantly faster on the GPU than more common approaches such as the multinomial, stratified and systematic resamplers, a speedup attributable to the absence of collective operations. Moreover, in single-precision (particularly relevant on GPUs due to its faster performance), the common approaches are numerically unstable for plausibly large numbers of particles, while these alternative approaches are not. Finally, we provide a number of auxiliary functions of practical use in resampling, such as for the permutation of ancestry vectors to enable in-place propagation of particles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Target Tracking Algorithm Based on Particle Filter and Genetic Algorithm

In this paper, we propose an efficient hybrid Particle Filter (PF) algorithm for video tracking by employing a genetic algorithm to solve the sample impoverishment problem. In the presented method, the object to be tracked is selected by a rectangular window inside which a few numbers of particles are scattered. The particles’ weights are calculated based on the similarity between feature vecto...

متن کامل

A New Modified Particle Filter With Application in Target Tracking

The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome th...

متن کامل

Proposed hardware architectures of particle filter for object tracking

In this article, efficient hardware architectures for particle filter (PF) are presented. We propose three different architectures for Sequential Importance Resampling Filter (SIRF) implementation. The first architecture is a two-step sequential PF machine, where particle sampling, weight, and output calculations are carried out in parallel during the first step followed by sequential resamplin...

متن کامل

FPGA Implementation of Rao-Blackwellized Particle Filter and Its Application to Sensorless Drive Control

Rao-Blackwellied particle filter is a stochastic filter combining Kalman filters with particle filters. It is suitable for models that could be decomposed into linear and nonlinear part. Since the conditionally linear part can be solved by the Kalman filter, the sequential Monte Carlo is run only on the non-linear subspace. The resulting algorithm is a parallel evaluation of multiple Kalman fil...

متن کامل

Design and Implementation of Flexible Resampling Mechanism for High-Speed Parallel Particle Filters

There are many applications in which particle filters outperform traditional signal processing algorithms. Some of these applications include tracking, joint detection and estimation in wireless communication, and computer vision. However, particle filters are not used in practice for these applications mainly because they cannot satisfy real-time requirements. This paper presents an efficient ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013